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Abstract

Transfer learning has become a standard prac-
tice to mitigate the lack of labeled data in med-
ical classification tasks. Whereas finetuning
a downstream task using supervised ImageNet
pretrained features is straightforward and ex-
tensively investigated in many works, there is
little study on the usefulness of self-supervised
pretraining. This paper assesses the transfer-
ability of the most recent self-supervised Ima-
geNet models, including SimCLR, SwAV, and
DINO, on selected medical imaging classifica-
tion tasks. The chosen tasks cover tumor de-
tection in sentinel axillary lymph node images,
diabetic retinopathy classification in fundus im-
ages, and multiple pathological condition clas-
sification in chest X-ray images. We demon-
strate that self-supervised pretrained models
yield richer embeddings than their supervised
counterparts, benefiting downstream tasks for
linear evaluation and finetuning. For example,
at a critically small subset of the data with lin-
ear evaluation, we see an im provement up to
14.79% in Kappa score in the diabetic retinopa-
thy classification task, 5.4% in AUC in the tu-
mor classification task, 7.03% AUC in the pneu-
monia detection, and 9.4% in AUC in the de-
tection of pathological conditions in chest X-
ray. In addition, we introduce Dynamic Vi-
sual Meta-Embedding (DVME) as an end-to-
end transfer learning approach that fuses pre-
trained embeddings from multiple models. We
show that the collective representation obtained
by DVME leads to a significant improvement in
the performance of selected tasks compared to
using a single pretrained model approach and
can be generalized to any combination of pre-
trained models.

Keywords: Self-supervised learning, Transfer
learning, Medical imaging

1. Introduction

1.1. Background and Motivation

The scarcity of high-quality annotated data remains
a notorious challenge in medical image analysis due
to the high cost of acquiring expert annotations (Cas-
tro et al., 2020). Transfer learning from large mod-
els pretrained in a supervised fashion on natural im-
ages such as ImageNet has become a de-facto solution
for 2D medical imaging tasks in low data regimes
(Lam et al., 2018; Bayramoglu and Heikkilä, 2016;
Pardamean et al., 2018; Yang et al., 2018). Re-
cently, self-supervised learning shows initial success
in building large-scale Deep Learning based applica-
tions by leveraging unannotated data for pretraining
(Zhou et al., 2019; Chen et al., 2019; Taleb et al.,
2020, 2021; Zhuang et al., 2019; Bai et al., 2019; Ab-
bet et al., 2020; Sowrirajan et al., 2021). However,
a bottleneck within self-supervised learning is the
demanding requirement of computational resources
to train compared to standard supervised learning
(Chen et al., 2020; Caron et al., 2021a,b; Grill et al.,
2020). For example, regarding training on ImageNet,
SwAV (Caron et al., 2021a) uses the batch size of 4096
distributed on 64 GPUs and SimCLR (Chen et al.,
2020) uses varying batch sizes between 256 and 8192
on 32-128 TPU cores. Even when the batch size is
small, the author of SimCLR notes that the training
time must be extended to provide more negative ex-
amples. In pretraining medical datasets, Azizi et al.
(2021) observe the best performance when using the
batch size of 1024 on 64 cloud TPU cores to train Sim-
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CLR on a chest X-ray dataset. While transfer learn-
ing from supervised pretraining on a large labeled
dataset such as ImageNet is widely studied (Raghu
et al., 2019; Ke et al., 2021), the transferability of
models pretrained on ImageNet using self-supervised
techniques requires further investigation.

This paper reflects on the effectiveness of trans-
fer learning with self-supervised features. We evalu-
ate the performance of four downstream classification
tasks using ImageNet pretrained features obtained
from supervised and self-supervised techniques. The
four distinct tasks concern three modalities with
varying data sizes and distributions. The first task
is in the domain of digital pathology and aims to de-
tect sentinel axillary lymph node metastases in hema-
toxylin and eosin (H&E) stained patches extracted
from whole-slide images. The second task concerns
the severity classification of diabetic retinopathy from
colored fundus images. The last two tasks are related
to reading X-ray images. One involves identifying
whether a patient is suffering from pneumonia and
the other involves detecting multiple findings, such as
pneumothorax, nodule or mass, opacity, and fracture.
In particular, we consider low data regimes ranging
from approximately 1% to 10% of the original dataset
size for each task (Section 5.3). We evaluate pre-
trained features of three self-supervised approaches,
SimCLR (Chen et al., 2020), SwAV (Caron et al.,
2021a), and DINO (Caron et al., 2021b), on afore-
mentioned tasks by training a linear layer on top of
frozen features. We find that DINO consistently out-
performs other self-supervised techniques and the su-
pervised baseline by a significant margin.

Additionally, we propose Dynamic Visual Meta-
Embeddings (DVME) - a model-agnostic technique
to combine multiple self-supervised pretrained fea-
tures for downstream tasks. In natural language pro-
cessing, it has been observed that different word em-
beddings work well for different tasks and that it is
difficult to anticipate the usefulness of a given em-
bedding technique for a certain task at hand. The
usage of a meta-embedding mitigates this problem
by constructing an ensemble of embedding sets to in-
crease the lexical coverage of vocabulary which leads
to improved performance on downstream tasks (Kiela
et al., 2018). Similarly, in vision tasks, we propose
to concatenate multiple pretrained embeddings with
self-attention for transfer learning. Concatenation
expands the embedding space and yields richer rep-
resentation while self-attention adapts the contribu-
tion of individual embedding to a specific downstream

task. We show that DVME leads to a further increase
in performance across all tasks compared to the best
single self-supervised pretrained model baseline.

1.2. Contributions

Overall, the main contributions are as following:

• Across four distinct medical image classification
tasks, we assess the quality of the embeddings
obtained from different models which are pre-
trained on ImageNet using state-of-the-art self-
supervised or supervised pretraining techniques.

• We identify a single self-supervised model which
consistently outperforms the other approaches
on all selected downstream tasks. In particular,
this effect is prominently observed in low data
regimes.

• We propose Dynamic Visual Meta-Embeddings
(DVME) to fully leverage the collective represen-
tations obtained from different self-supervised
pretrained models. The representations ob-
tained from the DVME model aggregation out-
perform all single model approaches on the se-
lected downstream tasks.

2. Related work

Self-supervised learning in medical imaging
Two main self-supervised approaches in medical
imaging are in the form of handcrafted pretext tasks
and contrastive learning. Early applications design
tailored pretext tasks to reconstruct images from
transformed or distorted inputs (Zhou et al., 2019;
Chen et al., 2019; Taleb et al., 2021; Zhuang et al.,
2019; Bai et al., 2019; Rivail et al., 2019; Abbet et al.,
2020). For example, Model Genesis (Zhou et al.,
2019) applies in-domain transfer learning to various
classification and segmentation tasks on CT and X-
ray images. The proposed architecture is an autoen-
coder that reconstructs images from four transforma-
tions: non-linear, local-shuffling, out-painting, and
in-painting. The induced transformations are sup-
posed to enable the encoder to learn features related
to appearance, texture, and context. Chen et al.
(2019) propose context restoration as a pretext task
applied in three common medical use cases: plane
detection on fetal 2D ultrasound images, abdominal
organ localization on CT images, and brain tumor
segmentation on MRI images. The proposed method
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generates distorted images with different spatial con-
texts while maintaining the same intensity distribu-
tion by repeatedly swapping two random patches in
an input image. Through reconstruction, the model
learns useful semantic features transferable in sub-
sequent target classification and segmentation tasks.
In a different approach, Taleb et al. (2021) propose
the multimodal puzzle task, inspired from the Jigsaw
puzzles, which facilitates rich representation learning
from multiple medical image modalities. The limi-
tation of handcrafted pretext tasks is that they are
highly task- and domain-specific, and thus cannot
generalize well to different tasks. Lately, contrastive
learning-based techniques (see Section 3) resolve this
issue. Sowrirajan et al. (2021) use MoCo (He et al.,
2020) to pretrain on unlabeled CheXpert (Irvin et al.,
2019) dataset and finetunes with labels on external
Shenzhen Hospital X-ray dataset (Jaeger et al., 2014)
to detect pleural effusion. Dippel et al. (2021) ex-
tends a contrastive loss to a self-reconstruction task
with attention mechanism on fundus images.

Transfer learning in medical imaging Transfer
learning with ImageNet pretrained features still in-
cites debates over its actual benefits for downstream
medical tasks (Raghu et al., 2019; Ke et al., 2021;
He et al., 2019). In a large data regime, Raghu et al.
(2019) show that lightweight models with random ini-
tialization can perform on par with large architec-
tures pretrained on ImageNet such as ResNet-50 (He
et al., 2016) and Inception-v3 (Szegedy et al., 2015).
On the contrary, Ke et al. (2021) argue that ImageNet
pretraining can significantly boost the performance
with newer architectures such as DenseNet (Huang
et al., 2017) and EfficientNet (Tan and Le, 2019). In
low data regimes, however, transfer learning with self-
supervised approaches has been found particularly
helpful in recent works (Newell and Deng, 2020; Azizi
et al., 2021; Chaves et al., 2021). Azizi et al. (2021)
perform transfer learning with SimCLR (Chen et al.,
2020) on X-ray and dermatology datasets and show
a significant gain compared to a supervised baseline.
Chaves et al. (2021) evaluate self-supervised models
on multiple dermatology datasets and find the ad-
vantage of self-supervised pretraining when using low
training data. Whereas prior works focus on a sin-
gle self-supervised technique (Azizi et al., 2021) and
a unique modality, i.e., dermatology (Chaves et al.,
2021), our work extends the investigation by bench-
marking various self-supervised approaches against
the supervised baseline across a set of heterogeneous
medical imaging tasks. Our primary goal is to com-

pare the richness of feature embeddings of different
self-supervised learning techniques pretrained on Im-
gaeNet in the scope of transfer learning on medical
imaging classification tasks.

3. Self-supervised Learning
Techniques

An important line of work in self-supervised learn-
ing is contrastive learning where the representation is
learned by comparing the similarity between images.
The output embeddings obtained from an encoder are
either pulled closer (similar) or pushed away (dissim-
ilar) in the embedding space. Most of the contrastive
approaches are built on the notion of multi-instance
level classification (Dosovitskiy et al., 2016), which
considers each image as a unique class and the model
learns to discriminate it from the rest of the images
in the batch. SimCLR and SwAV can be categorized
into the group of contrastive learning. A detailed
review and taxonomy of contrastive learning can be
found in (Le-Khac et al., 2020). There is also another
line of work which does not discriminate the instance
but matches the output features with those from a
momentum encoder. BYOL Grill et al. (2020) and
DINO are examples from this line. The techniques
of our focus in the paper are SimCLR, SwAV, and
DINO.

SimCLR Simple Framework for Contrastive
Learning of Visual Representation (Chen et al.,
2020) maximizes the agreement of two views from
the same image. The paper proposes a set of trans-
formations applied to input images to create positive
and negative pairs. An encoder takes a transformed
batch and forwards it to a projection head that
maps images to an embedding space. A contrastive
loss on top compares the embeddings to minimize
the distance between similar (positive) embeddings.
Finally, the projection head is discarded and the
encoder can be transferred to downstream tasks.

SwAV Swapping Assignments between multiple
Views of the same image (Caron et al., 2021a) also
contrasts two image views but not in a direct, sample-
based fashion as SimCLR. Instead, it compares the
cluster to which each view belongs. If two views
come from the same image, they should fall on the
same cluster assignment and vice versa. Caron et al.
(2021a) show that this approach has an advantage
over SimCLR in avoiding the need for large batch size
and improving the convergence time. In comparison

56



How Transferable are Self-supervised Features in Medical Image Classification Tasks?

to a prior clustering-based self-supervised technique
in (Caron et al., 2018), the clustering assignment pro-
cess is online, so that gradients can be backpropa-
gated in a batch-wise manner.

DINO Knowledge distillation without labels
(Caron et al., 2021b) matches the output probability
distributions of two image views obtained from two
networks. This approach takes inspiration from
Bootstrap Your Own Latent (BYOL) (Grill et al.,
2020) in the perspective of self distillation task
and the architecture of Vision Transformer (ViT)
(Dosovitskiy et al., 2021) as the backbone. Instead
of passing the views into the same network, DINO
passes two transformations of an image into two
networks, namely the student and teacher network.
The loss compares the probability outputs of both
networks and the student’s parameters are updated
via backpropagation while the teacher’s parameters
is updated via an exponential moving average of
the student ones. In addition, compared to using
convolutional architectures, Caron et al. (2021b)’s
study indicates that ViT-based DINO shows distinct
properties in characterizing object boundaries and
generates features that perform well using K-Nearest
Neighbors without further finetuning in ImageNet
classification task.

4. Datasets

The four datasets in our experiments are distinct in
terms of modality, dataset size, and class distribu-
tion to partially reflect the heterogeneity of typical
medical imaging tasks. We consider three common
modalities in medical image analysis: digital pathol-
ogy, fundus imaging, and X-ray.

PatchCamelyon (PatchCam) The dataset con-
tains H&E sentinel axillary lymph node patches ex-
tracted from the whole-slide image in the study at
(Ehteshami Bejnordi et al., 2017; Veeling et al., 2018).
All of the slides are annotated by expert pathologists.
If the center of a patch contains at least one pixel of
tumor tissue, it will be positive. The data version we
use is the curated one from Kaggle competition1 that
removes all the duplicated patches and comes with a
default train/test split. The original train set consists
of 220025 patches of size 96×96 with binary labels
indicating whether there is a tumor or not. For our
training task, we randomly select a subset comprising

1. https://www.kaggle.com/c/
histopathologic-cancer-detection

50000 images. The official test set comprises 57486
images for which no labels are provided. Hence, for
all performance evaluations on PatchCam, we submit
our predictions to Kaggle.

APTOS The dataset comprises colored fundus im-
ages of Diabetic Retinopathy (DR) patients obtained
from diverse clinics with different camera setups. For
each image, clinicians rate the severity with a score
between 0 and 4, indicating No-DR, Mild, Moder-
ate, Severe, and Proliferative DR, respectively. The
dataset is part of the challenge held on Kaggle2. The
train and test sets contain 3662 and 1928 images,
respectively. Similar to PatchCam, we submit the in-
ference of the test set to Kaggle to obtain the scores.

Pneumonina chest X-ray The dataset contains
chest X-ray images annotated by two expert radi-
ologists. Each radiologist classifies each image into
healthy and pneumonia. We obtain the dataset in
Kaggle 3 with a default train/test split of 5216/624
images. Each patient can have multiple images,
which is considered for patient stratification during
training and validation. Further description of the
dataset and acquisition can be found at (Kermany
et al., 2018).

NIH chest X-ray The dataset consists of chest X-
ray images provided by NIH Clinical Center4. Three
certified radiologists manually reviewed the images.
Each radiologist marks the presence of four medical
conditions: pneumothorax, nodule or mass, opacity,
and fracture. We use two subsets of the original NIH
Chest X-ray dataset, which are referred to as valida-
tion and test set in the study at (Majkowska et al.,
2020). We use the first subset (2414 images) for train-
ing and the second subset (1962 images) for evalua-
tion. Since there can be multiple findings per image,
we exclude such cases in our experiment for simplic-
ity. In addition, we also add a class called other for
when no mentioned conditions are found in the im-
age.

5. Experimental Setup

5.1. Architecture

To assess the transferability of self-supervised com-
pare to fully supervised features pretrained on Ima-

2. https://www.kaggle.com/c/
aptos2019-blindness-detection

3. https://www.kaggle.com/paultimothymooney/
chest-xray-pneumonia

4. https://nihcc.app.box.com/v/ChestXray-NIHCC
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geNet, we used ResNet-50 He et al. (2016), as it is
the backbone for state-of-the-art self-supervised ap-
proaches (Chen et al., 2020; He et al., 2020; Caron
et al., 2021a), including SwAV (Caron et al., 2021a)
and SimCLR (Chen et al., 2020). On the other hand,
for DINO (Caron et al., 2021b), the architecture is
VisionTransformer (ViT) with patch size 8×8. We
rely on a well-established computer VIsion library
for state-of-the-art Self-Supervised Learning (VISSL)
(Goyal et al., 2021) for SwAV and SimCLR. At the
same time, for DINO, we used available pretrained
weight on the Facebook research repository 5.

5.2. Hyperparameters and Augmentation

All experiments use the Adam optimizer starting
with a small learning rate between 1e-3 and 1e-4
and further reducing it when the validation loss does
not improve consecutively over five epochs. As our
study aims to compare different initializations and
not outperform the best performance, we do not ap-
ply intensive augmentation techniques. Images with
an original size larger than 224×224 are resized into
256×256, then cropped and applied further flipping
or rotation depending on the nature of modality. For
the PatchCam dataset, we apply directly flipping
without resizing or cropping as the size of the images
is less than 224×224.

5.3. Dataset sizes and subtasks

To fully assess the transferability of self-supervised
features under various data regimes, we define three
different subtasks, Small (S), Medium (M), and Full
(F). Table 1 reports detailed information regarding
data splits for each dataset. We construct the sub-
tasks with a five-fold cross-validation fashion. We
randomly extract samples from the entire dataset,
conduct the training and validation for each split,
and repeat this process five times. Then, we select
the best performing model on the validation set to
the fixed training set. To avoid bias learning due to
class imbalance, we maintain the number of samples
per class balance. The only exception is the NIH
Chest X-ray dataset; we used an oversampling strat-
egy during the training procedure because of a signif-
icant class imbalance.

5.4. Metrics

The evaluation metric for the PatchCam, Pneumo-
nia and NIH Chest X-ray is the area under the Re-

5. https://github.com/facebookresearch/dino

Table 1: Number of samples for different subtasks

Dataset S M F Test

PatchCam 500 5000 50000 57486
APTOS 50 500 3662 1928

Pneumonia Chest X-ray 50 500 5216 624
NIH Chest X-ray 20 200 2414 1962

ceiver Operating Characteristic curve (AUC) while
the Cohen Kappa score for APTOS. We submit the
APTOS and PatchCam test set predictions to Kag-
gle and obtain two scores for the private and public
leaderboards, which are evaluated on two different
portions of the test set. We calculate the final score
as the weighted average score of the private and pub-
lic leaderboard. Precisely, the final score is calculated
as savg = α× sprivate + (1− α)× spublic where α for
PatchCam is 0.51 and for APTOS is 0.85. The value
of α is the portion of the test set that Kaggle uses
to calculate the private leaderboard score and varies
depending on the competition.

5.5. Linear performance and finetuning

We conduct comprehensive experiments on pre-
trained models on ImageNet by two experiments: lin-
ear evaluation on frozen features and finetuning with
labels of downstream tasks. For SwAV and SimCLR
and fully supervised pretrained models on ImageNet,
we add the linear layer after the last average pool-
ing layer in ResNet-50. At the same time, for DINO,
we follow the implementation of Caron et al. (2021b)
to add a linear layer after the concatenation of class
tokens from the last four blocks in ViT. In addition
to linear evaluation we consider finetuning, where all
layers of the pretrained base network as well as the
final linear classifier are adapted on the downstream
task at hand.

5.6. Linear evaluation with DVME

Given a set of pretrained feature extractors, it may
be difficult to anticipate which pretrained model to
choose for a given downstream task at hand. This
concern is also shared in natural language process-
ing where there are multiple word embedding tech-
niques trained on different domains, each having its
own strengths depending on target tasks. Meta-
embedding is an effective technique that takes a union
over different word embeddings to tackle the out-of-
vocabulary problem and fuse multi-modal informa-
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tion (Kiela et al., 2018). Though there is no multi-
modal information in our study, we hypothesize that
the pretrained features from different techniques are
sufficiently independent of one another and encode
certain complementary information. Therefore, we
propose Dynamic Visual Meta-Embedding (DVME)
for vision tasks, aggregating information by concate-
nating the embeddings of SimCLR, SwAV, and DINO
pretrained models. The newly constructed embed-
ding space improves the separability of image features
through the complementary effect of each embedding
component. We extract the embedding space from
the last fully connected unit from SimCLR and SwAV
with the dimension 2048. For DINO, we construct
the embedding by concatenating the class token of
the last four blocks results in the dimension of 1536.
Then, we project each embedding into a fixed size
of 512 and feed the concatenation of the resulting
embedding into a self-attention module. Then, we
concatenate the embedding space and project it to
a fixed dimension of 512 to learn the importance of
each embedding component for a specific downstream
task. The self-attention module is the same as in the
Vision Transformer architecture (Dosovitskiy et al.,
2021) except that the attention is learned across dif-
ferent components of the meta-embedding instead of
image patches. Figure 1 shows a sketch of how self-
attention is incorporated when fusing the pretrained
features. The proposed DVME approach is not lim-
ited to SimCLR, SwAV, or DINO and can be used
with other feature extractors. We provide a snippet
of DVME implemented in PyTorch in Appendix Sec-
tion E.

Figure 1: Dynamic Visual Meta-Embedding
(DVME): The embeddings extracted from each pre-
trained model are projected to the same dimension
and concatenated before feeding to the self-attention
module.

6. Results and Discussion

6.1. Evaluation of self-supervised and
supervised pretrained features

We test the generalization of self-supervised and fully
supervised pretrained features on ImageNet by trans-
ferring them to several downstream medical imaging
classification tasks under various data regimes. Ta-
ble 2 shows Linear evaluation methods across vari-
ous datasets. It is visible that SwAV and SimCLR
pretrained features yield inconsistent patterns across
all downstream tasks. For example, while SwAV
and SimCLR initializations perform on par with each
other on PatchCam and NIH Chest X-ray, they are
different by approximately 10% in Kappa score and
3.7% in AUC on the S subsets of APTOS and Pneu-
monia Chest X-ray, respectively. Notably, DINO ini-
tialization consistently outperforms all the other ini-
tializations across all tasks by a significant margin.
For instance, on NIH Chest X-ray S and M subtasks,
DINO pretrained features improve approximately 5-
6% in AUC over SimCLR and SwAV. The single ex-
ception is the APTOS S subtask, where SwAV out-
performs DINO by 3.3% in AUC. However, DINO
still yields an improvement over SimCLR and Ima-
geNet supervised initialization by 7% and 11.2% in
Kappa score, respectively. We refer to Appendix B.1
for more detailed results on the performance obtained
by the competing initialization methods for different
dataset sizes. In comparison to ImageNet supervised
pretrained features, we observe that self-supervised
features improve the performance across all down-
stream tasks. This suggests that the representation
generated by self-supervised methods are of higher
quality, leading to better performance on the test
set and reducing the performance variability between
folds in low data regimes, similar to the observation
made in Chaves et al. (2021).

Figure 2 (a,b,d,e) shows the t-SNE visualization
of the features extracted from the supervised pre-
trained ResNet-50 and DINO on the PatchCam (bi-
nary classification) and APTOS (multi-class) down-
stream tasks. It is visible that DINO offers a clear
class separation compare to its supervised coun-
terpart. We observe the same behavior for other
datasets, which we refer to Appendix D for further
detail.

We extend our comparison by finetuning model
initializations separately on all downstream tasks.
Table 3 summarizes the finetuning results across
datasets and their subtasks. Similar to the linear
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(a) Supervised
ImageNet

(b) DINO (c) DVME

(d) Supervised
ImageNet

(e) DINO (f ) DVME

Figure 2: t-SNE visualization of embeddings obtained using different pretrained feature extractors (super-
vised ImageNet, DINO, proposed method DVME). Top row: PatchCam dataset, bottom row: APTOS
dataset

Table 2: Linear evaluation performance of different self-supervised initializations, supervised pretraining and
random initialization on different scales (small, medium, full) of the data.

Dataset Method Small (S) Medium (M) Full (F)

PatchCam

Random 0.6594 ± 0.0319 0.6994 ± 0.0079 0.7990 ± 0.0021
Supervised ImageNet 0.7517 ± 0.0136 0.7863 ± 0.0063 0.7975 ± 0.0032

SwAV 0.7834 ± 0.0112 0.8043 ± 0.0072 0.8088 ± 0.0025
SimCLR 0.7895 ± 0.0091 0.8053 ± 0.0069 0.8084 ± 0.0026
DINO 0.8058 ± 0.0100 0.8359 ± 0.0053 0.8487 ± 0.0014

APTOS
(*)

Random 0.0324 ± 0.0602 0.0624 ± 0.0459 0.1550 ± 0.1160
Supervised ImageNet 0.4851 ± 0.0811 0.6822 ± 0.0257 0.7331 ± 0.0124

SwAV 0.6330 ± 0.0204 0.7274 ± 0.0095 0.7617 ± 0.0128
SimCLR 0.5305 ± 0.0539 0.6500 ± 0.0138 0.6989 ± 0.0084
DINO 0.6003 ± 0.0691 0.7372 ± 0.0167 0.7790 ± 0.0083

Pneumonia
Chest
X-ray

Random 0.6899 ± 0.0339 0.8258 ± 0.0237 0.8907 ± 0.0144
Supervised ImageNet 0.8789 ± 0.0234 0.8954 ± 0.0151 0.9397 ± 0.0033

SwAV 0.8808 ± 0.0222 0.9215 ± 0.0252 0.9709 ± 0.0047
SimCLR 0.9168 ± 0.0006 0.9346 ± 0.0072 0.9665 ± 0.0027
DINO 0.9492 ± 0.0170 0.9718 ± 0.0055 0.9868 ± 0.0008

NIH
Chest
X-ray

Random 0.5212 ± 0.0344 0.5317 ± 0.0176 0.5392 ± 0.0346
Supervised ImageNet 0.5383 ± 0.0392 0.6688 ± 0.0148 0.7109 ± 0.0084

SwAV 0.5785 ± 0.0258 0.6889 ± 0.0089 0.7225 ± 0.0139
SimCLR 0.5792 ± 0.0435 0.6645 ± 0.0067 0.6983 ± 0.0231
DINO 0.6323 ± 0.0131 0.7373 ± 0.0112 0.7438 ± 0.0228

(*) The evaluation metric for APTOS is Cohen-Kappa score while for others is AUC score.
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Table 3: Finetuning performance of different self-supervised initializations, supervised pretraining and ran-
dom initialization on different scales (small, medium, full) of the data.

Dataset Method Small (S) Medium (M) Full (F)

PatchCam

Random 0.7355 ± 0.0282 0.7660 ± 0.0223 0.8515 ± 0.0023
Supervised ImageNet 0.7897 ± 0.0162 0.8274 ± 0.0051 0.8483 ± 0.0097

SwAV 0.7895 ± 0.0336 0.8399 ± 0.0142 0.8619 ± 0.0090
SimCLR 0.8021 ± 0.0138 0.8329 ± 0.0085 0.8553 ± 0.0110
DINO 0.8366 ± 0.0092 0.8440 ± 0.0172 0.8517 ± 0.0158

APTOS
(*)

Random 0.0177 ± 0.0954 0.3233 ± 0.0822 0.5927 ± 0.0545
Supervised ImageNet 0.4817 ± 0.0991 0.7369 ± 0.0310 0.8057 ± 0.0149

SwAV 0.4928 ± 0.0378 0.7594 ± 0.0246 0.8293 ± 0.0133
SimCLR 0.5916 ± 0.0570 0.7603 ± 0.0249 0.8264 ± 0.0103
DINO 0.6601 ± 0.0447 0.7945 ± 0.0079 0.8365 ± 0.0213

Pneumonia
Chest
X-ray

Random 0.6895 ± 0.0512 0.9183 ± 0.0186 0.9820 ± 0.0043
Supervised ImageNet 0.8649 ± 0.0442 0.9698 ± 0.0066 0.9910 ± 0.0015

SwAV 0.9289 ± 0.0291 0.9814 ± 0.0087 0.9927 ± 0.0016
SimCLR 0.9197 ± 0.0168 0.9781 ± 0.0085 0.9950 ± 0.0013
DINO 0.9256 ± 0.0235 0.9867 ± 0.0051 0.9948 ± 0.0010

NIH
Chest
X-ray

Random 0.5015 ± 0.0253 0.6404 ± 0.0165 0.6616 ± 0.0345
Supervised ImageNet 0.5251 ± 0.0238 0.6816 ± 0.0429 0.7618 ± 0.0116

SwAV 0.5903 ± 0.0384 0.6973 ± 0.0227 0.7737 ± 0.0212
SimCLR 0.5570 ± 0.0450 0.7228 ± 0.0287 0.7358 ± 0.0295
DINO 0.5552 ± 0.0546 0.6652 ± 0.0114 0.7404 ± 0.0240

(*) The evaluation metric for APTOS is Cohen-Kappa score while for others is AUC score.

Table 4: Linear evaluation performance of Dynamic Visual Meta-Embedding (DVME) in comparison with
the best score obtained using a single pretrained model on different downstream tasks on different scales
(small, medium, full) of the data.

Dataset Method Small (S) Medium (M) Full (F)

PatchCam
DVEM 0.8227 ± 0.0148 0.8399 ± 0.0059 0.8467 ± 0.0094

Best single baseline 0.8058 ± 0.0100 0.8359 ± 0.0100 0.8487 ± 0.0014

APTOS (*)
DVME 0.6913 ± 0.0575 0.7925 ± 0.0265 0.8242 ± 0.0279

Best single baseline 0.6330 ± 0.0204 0.7372 ± 0.0167 0.7790 ± 0.0083

Pneumonia
Chest X-ray

DVME 0.9539 ± 0.0025 0.9696 ± 0.0101 0.9842 ± 0.0029
Best single baseline 0.9492 ± 0.0170 0.9718 ± 0.0055 0.9868 ± 0.0008

NIH
Chest X-ray

DVME 0.6566 ± 0.0564 0.7601 ± 0.0146 0.7538 ± 0.0234
Best single baseline 0.6323 ± 0.0131 0.7373 ± 0.0112 0.7438 ± 0.0228

(*) The evaluation metric for APTOS is Cohen-Kappa score while for others is AUC score.
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evaluation results, we consistently observe a higher
performance for all self-supervised pretrained initial-
izations compared to the supervised pretrained and
randomly initialized baselines in the low data regimes
(S, M), which supports the observation made by Az-
izi et al. (2021); Chaves et al. (2021). DINO pre-
trained features outperform those from other self-
supervised methods in 2/4 S subtasks and 3/4 M
subtasks. When using full data for fine-tuning, all
self-supervised pretrained initializations consistently
outperform the baseline methods on PatchCam, AP-
TOS and Pneumonia Chest X-ray. However, for full
NIH Chest X-ray task data, only SwAV exceeds the
supervised baseline performance.

Moreover, we observe that for S subtask of AP-
TOS, Pneumonia Chest X-ray, and NIH Chest X-
ray dataset where there are 50 samples or less fine-
tuning leads to overfitting. For example, while
DINO achieves the highest AUC of 0.6323 on the
S subtask of NIH Chest X-ray in linear evaluation,
the best performance for finetuning is obtained by
SwAV and reaches only 0.5903 AUC. In the APTOS
dataset, SwAV initialization reaches 0.6330 at the
small dataset size in linear evaluation but drops to
0.4928 in finetuning. However, when the number of
samples is increased up to a few thousand, the fine-
tuning performance is higher than linear evaluation
across all of the tasks. When using full data, the best
performance using finetuning mounts up to 1.32% in
AUC, 5.75% in Kappa score, 0.85% in AUC, and 3%
in AUC in PatchCam, APTOS, Pneumonia Chest X-
ray, and NIH Chest X-ray tasks, respectively. The
improvement can be attributed to the increase in
training samples, helping the model fit well to the
downstream data but maintaining a decent general-
ization.

6.2. Evaluation of DVME performance

Table 4 summarizes the results obtained from fus-
ing SwAV, SimCLR, and DINO with the DVME ap-
proach. We evaluate DVME similar to the linear per-
formance evaluation from Section 6.1 by training only
the meta-embedding on top of the three frozen fea-
ture extractors, cf. Section 5.6. As a performance
benchmark, we select the self-supervised initializa-
tion for each dataset and each fraction of data that
leads to the best linear evaluation performance, cf.
Table 2. DVME outperforms this benchmark in 4/4
of the S subtasks, 3/4 of the M subtasks, and 2/4 F
subtasks. For the subtasks where DVME is not ex-
ceeding the benchmark performance, the difference

lies within one standard deviation of the DVME lin-
ear evaluation score. The improvement of DVME
over the benchmark is particularly pronounced for
the APTOS and NIH Chest X-ray tasks. For exam-
ple, DVME helps gain roughly 6% in Kappa score
over the best individual baseline for the S and M
subtask of the APTOS dataset.

The t-SNE visualizations of the DVME embed-
dings in Figure 2 (c,f) qualitatively indicate that the
clusters are better separated, particularly in the case
of multiclass classification. When analyzing the at-
tention matrix, we find that SwAV and SimCLR pay
little attention to each other but firmly into DINO,
suggesting the representation from SwAV and Sim-
CLR could be more similar and thus not so informa-
tive compared to DINO.

To better understand the effect of self-attention on
the model fusion, we conduct an ablation study on
DVME in Appendix C. In the setting without self-
attention, the meta-embedding is directly connected
to the linear classifier. Without self-attention, the
feature fusion still yields a significant improvement
over the baseline, which supports our hypothesis in
Section 5.6 that each embedding contains comple-
mentary information. However, self-attention is par-
ticularly beneficial to specific tasks. For example, on
APTOS, the Kappa scores increase by 5.6%, 4.4%,
and 4.8% for the S, M, and F subtask, respectively.

7. Conclusion

This study assesses the quality of ImageNet self-
supervised pretrained features in four selected med-
ical image classification tasks. We demonstrate that
feature extractor that is pretrained using SwAV, Sim-
CLR, or DINO consistently yield richer embeddings
on the downstream tasks than a supervised pre-
trained baseline model. Among all self-supervised
techniques, DINO outperforms the other methods on
the majority of datasets and subtasks. Furthermore,
we show that each pretrained model’s representations
encode complementary information that can be fused
to yield even more meaningful features. Therefore, we
propose Dynamic Visual Meta-Embedding (DVME),
a model-agnostic meta-embedding approach. Our ex-
periments indicate that DVME outperforms the best
single model baseline on all downstream tasks. As
a model-agnostic approach, DVME is not limited to
SwAV, SimCLR, or DINO. With slight modifications,
other models can be combined using DVME to gen-
erate enriched representations.
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Appendix A. Dataset splits

For each experiment on a single dataset, we split the dataset into 5 training and validation folds. Each
training fold contains the same number of samples per each class. An exception is the NIH dataset since the
number of samples across classes is highly imbalanced. In this case, we continue sampling to maximize the
number of samples per each class as much as possible and use oversampling during the training process to
compensate for class imbalance. In section B, we report the sample size in absolute values across all of our
experiments.

Appendix B. Detailed results

B.1. Linear Evaluation

For all experiments in linear evaluation, we replace the last layer of the pretrained model with a new linear
classifier and train only this layer. The minimum and maximum number of epochs that we train our models
are 30 and 50 respectively. In addition, we set early stopping with the patience of 10 epochs. The initial
learing rate is 0.001 and is reduced with a factor of 0.1 by the ReduceLROnPlateau scheduler when the
validation score does not improve for 5 epochs consecutively. The batch size of 64 is kept fixed across all
experiments.

Table B1: Linear evaluation on the PatchCam dataset with various initializations. The mean AUC is
obtained across 5 folds.

Mean AUC

Number of samples Random Supervised ImageNet SwAV SimCLR DINO

50 0.5041 ± 0.0091 0.7193 ± 0.0199 0.7543 ± 0.0342 0.7502 ± 0.0376 0.7721 ± 0.0233
100 0.5001 ± 0.0002 0.7287 ± 0.0218 0.7756 ± 0.0280 0.7714 ± 0.0387 0.8040 ± 0.0050
200 0.5629 ± 0.0310 0.7183 ± 0.0224 0.7510 ± 0.0345 0.7675 ± 0.0189 0.8010 ± 0.0107

500 (S) 0.6594 ± 0.0319 0.7517 ± 0.0136 0.7834 ± 0.0112 0.7895 ± 0.0091 0.8058 ± 0.0100
1000 0.6886 ± 0.0090 0.7667 ± 0.0087 0.7686 ± 0.0509 0.7981 ± 0.0024 0.8204 ± 0.0106
2000 0.6955 ± 0.0168 0.7709 ± 0.0075 0.8022 ± 0.0071 0.7996 ± 0.0076 0.8214 ± 0.0116

5000 (M) 0.6994 ± 0.0079 0.7863 ± 0.0063 0.8043 ± 0.0072 0.8053 ± 0.0069 0.8359 ± 0.0053
10000 0.7110 ± 0.0046 0.7894 ± 0.0046 0.8338 ± 0.0163 0.8051 ± 0.0050 0.8399 ± 0.0029
20000 0.7210 ± 0.0081 0.7970 ± 0.0061 0.8310 ± 0.0356 0.8110 ± 0.0048 0.8446 ± 0.0033
Full 0.7990 ± 0.0021 0.7975 ± 0.0032 0.8088 ± 0.0025 0.8084 ± 0.0026 0.8487 ± 0.0014

Table B2: Linear evaluation on the APTOS dataset with various initializations. The mean Kappa score is
obtained across 5 folds.

Mean Kappa Score

Number of samples Random Supervised ImageNet SwAV SimCLR DINO

50 (S) 0.0324 ± 0.0602 0.4851 ± 0.0811 0.6330 ± 0.0204 0.5305 ± 0.0539 0.6003 ± 0.0691
100 -0.0272 ± 0.0300 0.5758 ± 0.0435 0.6559 ± 0.0260 0.5657 ± 0.0611 0.6889 ± 0.0433
200 0.0083 ± 0.0429 0.6752 ± 0.0219 0.7100 ± 0.0118 0.6369 ± 0.0084 0.7339 ± 0.0244

500 (M) 0.0624 ± 0.0459 0.6822 ± 0.0257 0.7274 ± 0.0095 0.6500 ± 0.0138 0.7372 ± 0.0167
Full 0.1550 ± 0.1160 0.7331 ± 0.0124 0.7617 ± 0.0128 0.6989 ± 0.0084 0.7790 ± 0.0083
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Table B3: Linear evaluation on the Pneumonia Chest X-Ray dataset with various initializations. The mean
AUC is obtained across 5 folds.

Mean AUC

Number of samples Random Supervised ImageNet SwAV SimCLR DINO

50 (S) 0.6899 ± 0.0339 0.8789 ± 0.0234 0.8808 ± 0.0222 0.9168 ± 0.0006 0.9492 ± 0.0170
100 0.7323 ± 0.0602 0.8788 ± 0.0197 0.8731 ± 0.0260 0.9010 ± 0.0337 0.9466 ± 0.0154
200 0.7720 ± 0.0247 0.8789 ± 0.0315 0.8753 ± 0.0246 0.9176 ± 0.0154 0.9553 ± 0.0136

500 (M) 0.8258 ± 0.0237 0.8954 ± 0.0151 0.9215 ± 0.0252 0.9346 ± 0.0072 0.9718 ± 0.0055
Full 0.8907 ± 0.0144 0.9397 ± 0.0033 0.9709 ± 0.0047 0.9665 ± 0.0027 0.9868 ± 0.0008

Table B4: Linear evaluation on the NIH Chest X-ray dataset with various initializations. The mean AUC is
obtained across 5 folds.

Mean AUC

Number of samples Random Supervised ImageNet SwAV SimCLR DINO

20 (S) 0.5212 ± 0.0344 0.5383 ± 0.0392 0.5785 ± 0.0258 0.5792 ± 0.0435 0.6323 ± 0.0131
50 0.5127 ± 0.0172 0.5897 ± 0.0283 0.6469 ± 0.0140 0.6273 ± 0.0130 0.6831 ± 0.0233
100 0.5031 ± 0.0465 0.6388 ± 0.0169 0.6563 ± 0.0238 0.6359 ± 0.0375 0.6686 ± 0.0227
150 0.5044 ± 0.0216 0.6432 ± 0.0283 0.6673 ± 0.0272 0.6686 ± 0.0143 0.7385 ± 0.0243

200 (M) 0.5317 ± 0.0176 0.6688 ± 0.0148 0.6889 ± 0.0089 0.6645 ± 0.0067 0.7373 ± 0.0112
Full 0.5392 ± 0.0346 0.7109 ± 0.0084 0.7225 ± 0.0139 0.6983 ± 0.0231 0.7438 ± 0.0228

B.2. Finetuning

We keep all the hyperparameters the same as linear evaluation (Section B.1) when finetuning all models
except DINO since it has a different architecture. For DINO, we start with a smaller learning rate of 0.0001
and use a smaller batch size of 16 instead.

Table B5: Finetuning on the PatchCam dataset with various initializations. The mean AUC is obtained
across 5 folds.

Mean AUC

Number of samples Random Supervised ImageNet SwAV SimCLR DINO

50 0.5181 ± 0.0402 0.6359 ± 0.0863 0.6237 ± 0.1207 0.6631 ± 0.0578 0.7901 ± 0.0093
100 0.5725 ± 0.0692 0.6844 ± 0.1123 0.6164 ± 0.0981 0.6116 ± 0.0630 0.8115 ± 0.0300
200 0.7016 ± 0.0483 0.7656 ± 0.0395 0.6539 ± 0.0993 0.6305 ± 0.0845 0.8028 ± 0.0332

500 (S) 0.7355 ± 0.0282 0.7897 ± 0.0162 0.7895 ± 0.0336 0.8021 ± 0.0138 0.8366 ± 0.0092
1000 0.7642 ± 0.0220 0.7870 ± 0.0433 0.8174 ± 0.0182 0.8160 ± 0.0096 0.8454 ± 0.0091
2000 0.7674 ± 0.0118 0.7950 ± 0.0204 0.8221 ± 0.0255 0.7944 ± 0.0161 0.8438 ± 0.0220

5000 (M) 0.7660 ± 0.0223 0.8274 ± 0.0051 0.8399 ± 0.0142 0.8329 ± 0.0085 0.8440 ± 0.0172
10000 0.7846 ± 0.0126 0.8338 ± 0.0079 0.8338 ± 0.0163 0.8402 ± 0.0118 0.8379 ± 0.0165
20000 0.8114 ± 0.0110 0.8491 ± 0.0065 0.8587 ± 0.0116 0.8492 ± 0.0186 0.8745 ± 0.0045
Full 0.8515 ± 0.0023 0.8483 ± 0.0097 0.8619 ± 0.0090 0.8553 ± 0.0110 0.8517 ± 0.0158
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Table B6: Finetuning on the APTOS dataset with various initializations. The mean Kappa score is obtained
across 5 folds.

Mean Kappa Score

Number of samples Random Supervised ImageNet SwAV SimCLR DINO

50 (S) 0.0177 ± 0.0954 0.4817 ± 0.0991 0.4928 ± 0.0378 0.5916 ± 0.0570 0.6601 ± 0.0447
100 0.8080 ± 0.0759 0.5289 ± 0.0930 0.6015 ± 0.0784 0.6085 ± 0.0412 0.7144 ± 0.0709
200 0.1914 ± 0.0445 0.6634 ± 0.0405 0.7354 ± 0.0120 0.6860 ± 0.0412 0.7754 ± 0.0194

500 (M) 0.3233 ± 0.0822 0.7369 ± 0.0310 0.7594 ± 0.0246 0.7603 ± 0.0249 0.7945 ± 0.0079
Full 0.5927 ± 0.0545 0.8057 ± 0.0149 0.8293 ± 0.0133 0.8264 ± 0.0103 0.8365 ± 0.0213

Table B7: Finetuning on the Pneumonia Chest X-ray dataset with various initializations. The mean AUC
is obtained across 5 folds.

Mean AUC

Number of samples Random Supervised ImageNet SwAV SimCLR DINO

50 (S) 0.6895 ± 0.0512 0.8649 ± 0.0442 0.9289 ± 0.0291 0.9197 ± 0.0168 0.9256 ± 0.0235
100 0.8210 ± 0.0683 0.9032 ± 0.0423 0.9248 ± 0.0361 0.9199 ± 0.0338 0.9363 ± 0.0188
200 0.9004 ± 0.0078 0.9157 ± 0.0167 0.9593 ± 0.0125 0.9436 ± 0.0194 0.9687 ± 0.0086

500 (M) 0.9183 ± 0.0186 0.9698 ± 0.0066 0.9814 ± 0.0087 0.9781 ± 0.0085 0.9867 ± 0.0051
Full 0.9820 ± 0.0043 0.9910 ± 0.0015 0.9927 ± 0.0016 0.9950 ± 0.0013 0.9948 ± 0.0010

Table B8: Finetuning on the NIH Chest X-ray with various initializations. The mean AUC is obtained
across 5 folds.

Mean AUC

Number of samples Random Supervised ImageNet SwAV SimCLR DINO

20 (S) 0.5015 ± 0.0253 0.5251 ± 0.0238 0.5903 ± 0.0384 0.5570 ± 0.0450 0.5552 ± 0.0546
50 0.5492 ± 0.0828 0.6105 ± 0.0381 0.6172 ± 0.0167 0.6227 ± 0.0309 0.6348 ± 0.0286
100 0.5961 ± 0.0602 0.6567 ± 0.0357 0.6616 ± 0.0436 0.6768 ± 0.0773 0.6689 ± 0.0240
150 0.6114 ± 0.0293 0.6639 ± 0.0347 0.7037 ± 0.0558 0.6795 ± 0.0515 0.6551 ± 0.0318

200 (M) 0.6404 ± 0.0165 0.6816 ± 0.0429 0.6973 ± 0.0227 0.7228 ± 0.0287 0.6652 ± 0.0114
Full 0.6616 ± 0.0345 0.7618 ± 0.0116 0.7737 ± 0.0212 0.7358 ± 0.0295 0.7404 ± 0.0240
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Appendix C. Detailed results of DVME

Embedding from each self-supervised pretrained model is projected into a dimension of 512. Embeddings
from SimCLR, SwAV, and DINO add up to a dimension of 1536. The self-attention module is imple-
mented based on the timm libarary6. The output from the self-attention layer is further projected to a
512-dimensional layer followed by a ReLU layer, and the final linear layer. Table C1-C4 show the detailed
result of linear evaluation using DVME with and without self-attention.

Table C1: Linear evaluation using DVME on the PatchCam dataset. The mean AUC is obtained across 5
folds.

Mean AUC

Number of samples DVME w/o self-attention DVME

50 0.7376 ± 0.0350 0.7456 ± 0.0467
100 0.7906 ± 0.0226 0.7864 ± 0.0405
200 0.8076 ± 0.0182 0.8026 ± 0.0209

500 (S) 0.8196 ± 0.0100 0.8227 ± 0.0148
1000 0.8200 ± 0.0045 0.8316 ± 0.0112
2000 0.8242 ± 0.0083 0.8243 ± 0.0184

5000 (M) 0.8442 ± 0.0074 0.8399 ± 0.0059
10000 0.8417 ± 0.0044 0.8404 ± 0.0068
20000 0.8525 ± 0.0049 0.8444 ± 0.0100
Full 0.8478 ± 0.0052 0.8467 ± 0.0094

Table C2: Linear evaluation using DVME on the APTOS dataset. The mean Kappa score is obtained across
5 folds.

Mean Kappa Score

Number of samples DVME w/o self-attention DVME

50 (S) 0.6354 ± 0.0428 0.6913 ± 0.0575
100 0.7018 ± 0.0175 0.6992 ± 0.0860
200 0.7351 ± 0.0240 0.7787 ± 0.0191

500 (M) 0.7681 ± 0.0166 0.7925 ± 0.0265
Full 0.7759 ± 0.0134 0.8242 ± 0.0279

6. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
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Table C3: Linear evaluation using DVME on the Pneumonia Chest X-ray dataset. The mean AUC is
obtained across 5 folds.

Mean AUC

Number of samples DVME w/o self-attention DVME

50 (S) 0.9543 ± 0.0072 0.9539 ± 0.0025
100 0.9528 ± 0.0128 0.9469 ± 0.0111
200 0.9532 ± 0.0177 0.9569 ± 0.0170

500 (M) 0.9725 ± 0.0030 0.9696 ± 0.0101
Full 0.9865 ± 0.0030 0.9842 ± 0.0029

Table C4: Linear evaluation using DVME on the NIH Chest X-ray dataset. The mean AUC is obtained
across 5 folds.

Mean AUC

Number of samples DVME w/o self-attention DVME

20 (S) 0.6525 ± 0.0558 0.6566 ± 0.0564
50 0.7051 ± 0.0255 0.6871 ± 0.0400
100 0.7260 ± 0.0130 0.7091 ± 0.0428
150 0.7209 ± 0.0179 0.7437 ± 0.0310

200 (M) 0.7232 ± 0.0267 0.7601 ± 0.0146
Full 0.7575 ± 0.0177 0.7538 ± 0.0234

Appendix D. Embedding visualization

(a) Supervised ImageNet (b) DINO (c) DVME

Figure D1: t-SNE visualization of the pretrained embeddings from supervised ImageNet, DINO, and our
proposed method DVME on Pneumonary Chest X-ray dataset
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(a) Supervised ImageNet (b) DINO (c) DVME

Figure D2: t-SNE visualization of the pretrained embeddings from supervised ImageNet, DINO, and our
proposed method DVME on NIH Chest X-ray dataset

Appendix E. Dynamic Visual Meta-embeddings
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1 import torch.nn as nn

2 import torch

3

4 class DVME(nn.Module):

5

6 def __init__(self , proj_dim , num_cls , attn):

7 # proj_dim: dimension of projection (default is 512)

8 # num_cls: number of classes

9 # attn: self -attention module

10

11 super(DVME , self).__init__ ()

12 self.simclr_head = nn.Linear (2048, proj_dim)

13 self.swav_head = nn.Linear (2048 , proj_dim)

14 self.dino_head = nn.Linear (1536 , proj_dim)

15 self.attn = attn

16 self.normlayer = nn.LayerNorm(proj_dim *3)

17 self.proj_head = nn.Linear(proj_dim*3, proj_dim)

18 self.classifier = nn.Linear(proj_dim , num_cls)

19 self.dropout = nn.Dropout (0.2)

20

21

22

23 def forward(self , x):

24 # x: dictionary containing extracted embeddings from

25 # pretrained models SimCLR , SwAV , DINO

26

27 simclr_out = self.simclr_head(x[’simclr ’])

28 swav_out = self.swav_head(x[’swav’])

29 dino_out = self.dino_head(x[’dino’])

30 meta_x = torch.cat([simclr_out , swav_out , dino_out], dim=1)

31 # reshape the meta -emb into (batch , tokens , dim)

32 meta_x = meta_x.view(meta_x.size (0), -1, 1)

33 out = self.attn(meta_x)

34 out = self.normlayer(out.view(out.size (0), -1))

35 out = self.proj_head(out).relu()

36 out = self.dropout(out)

37 out = self.classifier(out)

38 return out

Listing 1: PyTorch code snippet of DVME
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Appendix F. Attention weights

(a) PatchCam (b) APTOS

(c) Pneumonia Chest X-ray (d) NIH Chest X-ray

Figure F1: The self-attention weights obtained from the self-attention layers of DVME. At each dataset, the
self-attention weights are averaged across all samples in test set using the models trained at the full size of
dataset.

Appendix G. Number of trainable parameters

Table G1: The number of trainable parameters across all architectures in linear evaluation and finetuning.

Architecture Evaluation Setting Number of trainable parameters

ResNet50
Linear Evaluation 10.2 K

Finetuning 23.5 M

ViT
Linear Evaluation 7.7 K

Finetuning 21.7 M

DVME
Linear Evaluation 3.6 M

Finetuning 72.4 M
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